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We provide explicit nonasymptotic estimates for the rate of convergence
of empirical means of Markov chains, together with a Gaussian or exponen-
tial control on the deviations of empirical means. These estimates hold un-
der a “positive curvature” assumption expressing a kind of metric ergodicity,
which generalizes the Ricci curvature from differential geometry and, on fi-
nite graphs, amounts to contraction under path coupling.

0. Introduction. The goal of the Markov chain Monte Carlo method is to
provide an efficient way to approximate the integral π(f ) := ∫

f (x)π(dx) of a
function f under a finite measure π on some space X . This approach, which has
been very successful, consists in constructing a hopefully easy-to-simulate Markov
chain (X1,X2, . . . ,Xk, . . .) on X with stationary distribution π , waiting for a time
T0 (the burn-in) so that the chain gets close to its stationary distribution, and then
estimating π(f ) by the empirical mean on the next T steps of the trajectory, with
T large enough:

π̂(f ) := 1

T

T0+T∑
k=T0+1

f (Xk).

We refer, for example, to [24] for a review of the topic.
Under suitable assumptions [19], it is known that π̂(f ) almost surely tends to

π(f ) as T → ∞, that the variance of π̂ (f ) decreases asymptotically like 1/T and
that a central limit theorem holds for the errors π̂(f )−π(f ). Unfortunately, these
theorems are asymptotic only, and thus mainly of theoretical interest since they do
not allow to give explicit confidence intervals for π(f ) at a given time T . Some
even say that confidence intervals disappeared the day MCMC methods appeared.

In this paper, we aim at establishing rigorous nonasymptotic upper bounds for
the error |π̂(f ) − π(f )|, which will provide good deviation estimates and con-
fidence intervals for π(f ). An important point is that we will try to express all

Received April 2009; revised February 2010.
AMS 2000 subject classifications. 65C05, 60J22, 62E17.
Key words and phrases. Markov chain Monte Carlo, concentration of measure, Ricci curvature,

Wasserstein distance.

2418

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/10-AOP541
http://www.imstat.org
http://www.ams.org/msc/


CURVATURE, CONCENTRATION AND MCMC ERROR ESTIMATES 2419

results in terms of explicit quantities that are readily computable given a choice of
a Markov chain; and, at the same time, recover correct order of magnitudes and
improve on known estimates in a surprising variety of examples.

Our nonasymptotic estimates have the same qualitative behavior as theory pre-
dicts in the asymptotic regime: the variance of π̂(f ) decreases like 1/T , and the
bias decreases exponentially in T0. Moreover, we provide a Gaussian or expo-
nential control on deviations of π̂(f ), which allows for good confidence intervals.
Finally, we find that the influence of the choice of the starting point on the variance
of π̂(f ) decreases like 1/T 2.

Our results hold under an assumption of positive curvature [21, 22], which can
be understood as a kind of “metric ergodicity” expressing contraction in a trans-
portation distance. This assumption reduces to the well-known contraction under
path coupling when X is a finite graph (see, e.g., Chapter 14 in [17] or [1]), and,
when X is a manifold, to positive (Ricci) curvature in the ordinary geometric sense.

Not all ergodic Markov chains satisfy this assumption, but important examples
include spin systems at high temperature, several of the usual types of waiting
queues, processes such as the Ornstein–Uhlenbeck process on R

d or Brownian
motion on positively curved manifolds. We refer to [22] for more examples and
discussions on how one can check this assumption, but let us stress out that, at
least in principle, this curvature can be computed explicitly given a Markov tran-
sition kernel. This property or similar ones using contraction in transportation dis-
tance can be traced back to Dobrushin [8, 10], and have appeared several times
independently in the Markov chain literature [1, 6, 7, 9, 14, 15, 20–22].

Similar concentration inequalities have been recently investigated in [15] for
time-continuous Markov jump processes. More precisely, the first author obtained
Poisson-type tail estimates for Markov processes with positive Wasserstein cur-
vature. Actually, the latter is nothing but a continuous-time version of the Ricci
curvature emphasized in the present paper, so that we expect to recover such re-
sults by a simple limiting argument (cf. Section 2).

Gaussian-like estimates for the deviations of empirical means have previously
been given in [16] using the spectral gap of the Markov chain, under different
conditions (namely that the chain is reversible, that the law of the initial point has a
density w.r.t. π , and that f is bounded). The positive curvature assumption, which
is a stronger property than the spectral gap used by Lezaud, allows to lift these
restrictions: our results apply to an arbitrary starting point, the function f only has
to be Lipschitz, and reversibility plays no particular role. In a series of papers (e.g.,
[5, 12, 27]), the spectral approach has been extended into a general framework
for deviations of empirical means using various types of functional inequalities;
in particular [12] contains a very nice characterization of asymptotic variance of
empirical means of Lipschitz functions in terms of a functional inequality W1I

satisfied by the invariant distribution.
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1. Preliminaries and statement of the results.

1.1. Notation.

Markov chains. In this paper, we consider a Markov chain (XN)N∈N in a Pol-
ish (i.e., metric, complete, separable) state space (X , d). The associated transition
kernel is denoted (Px)x∈X where each Px is a probability measure on X , so that
Px(dy) is the transition probability from x to y. The N -step transition kernel is
defined inductively as

P N
x (dy) :=

∫
X

P N−1
x (dz)Pz(dy)

(with P 1
x := Px). The distribution at time N of the Markov chain given the initial

probability measure μ is the measure μP N given by

μP N(dy) =
∫

X
P N

x (dy)μ(dx).

Let as usual Ex denote the expectation of a random variable knowing that the initial
point of the Markov chain is x. For any measurable function f : X → R, define the
iterated averaging operator as

P Nf (x) := Exf (XN) =
∫

X
f (y)P N

x (dy), x ∈ X .

A probability measure π on X is said to be invariant for the chain if π = πP .
Under suitable assumptions on the Markov chain (XN)N∈N, such an invariant mea-
sure π exists and is unique, as we will see below.

Denote by Pd(X ) the set of those probability measures μ on X such that∫
X d(y, x0)μ(dy) < ∞ for some (or equivalently for all) x0 ∈ X . We will always

assume that the map x �→ Px is measurable, and that Px ∈ Pd(X ) for every x ∈ X .
These assumptions are always satisfied in practice.

Wasserstein distance. The L1 transportation distance, or Wasserstein distance,
between two probability measures μ1,μ2 ∈ Pd(X ) represents the “best” way to
send μ1 on μ2 so that on average, points are moved by the smallest possible dis-
tance. It is defined [26] as

W1(μ1,μ2) := inf
ξ∈�(μ1,μ2)

∫
X

∫
X

d(x, y)ξ(dx, dy),

where �(μ1,μ2) is the set of probability measures ξ on Pd(X × X ) with mar-
ginals μ1 and μ2, that is, such that

∫
y ξ(dx, dy) = μ1(dx) and

∫
x ξ(dx, dy) =

μ2(dy). [So, intuitively, ξ(dx, dy) represents the amount of mass traveling from x

to y.]
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Ricci curvature of a Markov chain. Our main assumption in this paper is the
following, which can be seen geometrically as a “positive Ricci curvature” [22]
property of the Markov chain.

STANDING ASSUMPTION. There exists κ > 0 such that

W1(Px,Py) ≤ (1 − κ)d(x, y)

for any x, y ∈ X .

When the space X is a finite graph, this is equivalent to the well-known path
coupling criterion; for example, in Theorem 14.6 of [17], the coefficient 1 − κ

appears as e−α .
In practice, it is not necessary to compute the exact value of the Wasserstein

distance W1(Px,Py): it is enough to exhibit one choice of ξ(dx, dy) providing a
good value of W1(Px,Py).

An important remark is that on a “geodesic” space X , it is sufficient to control
W1(Px,Py) only for nearby points x, y ∈ X , and not for all pairs of points (Propo-
sition 19 in [22]). For instance, on a graph, it is enough to check the assumption
on pairs of neighbors.

These remarks make the assumption possible to check in practice, as we will
see from the examples below.

More notation: Eccentricity, diffusion constant, local dimension, granularity.
Under the assumption above, Corollary 21 in [22] entails the existence of a unique
invariant measure π ∈ Pd(X ) with, moreover, the following geometric ergodicity
in W1-distance [instead of the classical total variation distance, which is obtained
by choosing the trivial metric d(x, y) = 1{x �=y}]:

W1(μP N,π) ≤ (1 − κ)NW1(μ,π),(1)

and in particular

W1(P
N
x ,π) ≤ (1 − κ)NE(x),(2)

where the eccentricity E at point x ∈ X is defined as

E(x) :=
∫

X
d(x, y)π(dy).

Eccentricity will play the role that the diameter of the graph plays in the path
coupling setting, though on unbounded spaces better bounds are needed. Indeed,
eccentricity satisfies the bounds [22]

E(x) ≤

⎧⎪⎪⎨
⎪⎪⎩

diam X ;
E(x0) + d(x, x0), x0 ∈ X ;
1

κ

∫
X

d(x, y)Px(dy).
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These a priori estimates are useful in various situations. In particular, the last one
is “local” in the sense that it is easily computable given the Markov kernel Px .

Let us also introduce the coarse diffusion constant σ(x) of the Markov chain at
a point x ∈ X , which controls the size of the steps, defined by

σ(x)2 := 1

2

∫ ∫
d(y, z)2Px(dy)Px(dz).

Let the local dimension nx at point x ∈ X be given by

nx := inf
f : X →R

f 1-Lipschitz

∫∫
d(y, z)2Px(dy)Px(dz)∫∫ |f (y) − f (z)|2Px(dy)Px(dz)

≥ 1.

Let the granularity of the Markov chain be

σ∞ := 1

2
sup
x∈X

diam SuppPx,

which we will often assume to be finite.
For example, for the simple random walk in a graph we have σ∞ ≤ 1 and

σ(x)2 ≤ 2. The bound nx ≥ 1 is often sufficient for application to graphs.
Finally, we will denote by ‖ · ‖Lip the usual Lipschitz seminorm of a function f

on X :

‖f ‖Lip := sup
x �=y

|f (x) − f (y)|
d(x, y)

.

1.2. Results. Back to the Introduction, choosing integers T ≥ 1 and T0 ≥ 0
and setting

π̂(f ) := 1

T

T0+T∑
k=T0+1

f (Xk),

the purpose of this paper is to understand how fast the difference |π̂(f ) − π(f )|
goes to 0 as T goes to infinity for a large class of functions f . Namely, we will con-
sider Lipschitz functions (recall that Corollary 21 in [22] implies that all Lipschitz
functions are π -integrable).

Bias and nonasymptotic variance. Our first interest is in the nonasymptotic
mean quadratic error

Ex[|π̂(f ) − π(f )|2]
given any starting point x ∈ X for the Markov chain.

There are two contributions to this error (see Figure 1): a variance part, control-
ling how π̂(f ) differs between two independent runs both starting at x, and a bias
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FIG. 1. Bias and variance.

part, which is the difference between π(f ) and the average value of π̂(f ) starting
at x. Namely, the mean quadratic error decomposes as the sum of the squared bias
plus the variance

Ex[|π̂ (f ) − π(f )|2] = |Exπ̂(f ) − π(f )|2 + Varx π̂(f ),(3)

where Varx π̂(f ) := Ex[|π̂(f ) − Exπ̂(f )|2].
As we will see, these two terms have different behaviors depending on T0 and T .

For instance, the bias is expected to decrease exponentially fast as the burn-in
period T0 is large, whereas if T is fixed, the variance term does not vanish as
T0 → ∞.

Let us start with control of the bias term, which depends, of course, on the
starting point of the Markov chain. All proofs are postponed to Section 3.

PROPOSITION 1 (Bias of empirical means). For any Lipschitz function
f : X → R, we have the upper bound on the bias

|Exπ̂(f ) − π(f )| ≤ (1 − κ)T0+1

κT
E(x)‖f ‖Lip.(4)

The variance term is more delicate to control. For comparison, let us first men-
tion that under the invariant measure π , the variance of a Lipschitz function f is
bounded as follows (and this estimate is often sharp):

Varπ f ≤ ‖f ‖2
Lip sup

x∈X

σ(x)2

nxκ
(5)

(cf. Lemma 9 below or Proposition 32 in [22]). This implies that, were one able to
sample from the invariant distribution π , the ordinary Monte Carlo method of es-
timating π(f ) by the average over T independent samples would yield a variance

bounded by
‖f ‖2

Lip
T

supx∈X
σ(x)2

nxκ
. Because of correlations, this does not hold for the

MCMC method. Nevertheless, we get the following.
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THEOREM 2 (Variance of empirical means, 1). Provided the inequalities make
sense, we have

Varx π̂(f ) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖f ‖2
Lip

κT
sup
x∈X

σ(x)2

nxκ
, if T0 = 0,

‖f ‖2
Lip

κT

(
1 + 1

κT

)
sup
x∈X

σ(x)2

nxκ
, otherwise.

(6)

The most important feature of this formula is the 1/(κT ) factor, which means
there is an additional 1/κ factor with respect to the ordinary Monte Carlo case.
Intuitively, the idea is that correlations disappear after roughly 1/κ steps, and so
T steps of the MCMC method are “worth” only κT independent samples. This
1/(κT ) factor will appear repeatedly in our text.

To get convinced that this 1/(κT ) factor in our estimate (6) is natural, observe
that if the burn-in T0 is large enough, then the law of XT0 will be close to the
invariant distribution π so that Varx π̂(f ) will behave like VarX0∼π π̂(f ). Then
we have

VarX0∼π π̂(f )

= 1

T 2

(
T∑

i=1

VarX0∼π(f (Xi)) + 2
∑

1≤i<j≤T

CovX0∼π(f (Xi), f (Xj ))

)
,

but our assumption on κ easily implies that correlations decrease exponen-
tially fast with rate 1 − κ so that (at least in the reversible case) we have
CovX0∼π(f (X0), f (Xt)) ≤ (1 − κ)t VarX0∼π f (X0). In particular, for any fixed i,
we have VarX0∼π(f (Xi))+2

∑
j>i CovX0∼π(f (Xi), f (Xj )) ≤ 2

κ
VarX0∼π f (Xi).

Plugging this into the above yields VarX0∼π π̂(f ) ≤ 2
κT

Varπ f , which explains the
1/(κT ) factor.

Unbounded diffusion constant. In the formulas above, a supremum of σ(x)2/

nx appeared. This is fine when considering, for example, the simple random walk
on a graph, because then σ(x)2/nx ≈ 1 for all x ∈ X . However, in some situations
(e.g., binomial distributions on the cube), this supremum is much larger than a
typical value, and, in some continuous-time limits on infinite spaces, the supremum
may even be infinite (as in the example of the M/M/∞ queueing process below).
For such situations, one expects the variance to depend, asymptotically, on the
average of σ(x)2/nx under the invariant measure π , rather than its supremum.

The next result generalizes Theorem 2 to Markov chains with unbounded diffu-
sion constant σ(x)2/nx . We will assume that σ(x)2/nx has at most linear growth
(this is consistent with the usual theorems on Markov processes, in which linear
growth on the coefficients of the diffusion is usually assumed).

Of course, if one starts the Markov chain at a point x with large σ(x)2, meaning
that the chain has a large diffusion constant at the beginning, then the variance of
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the empirical means started at x will be accordingly large, at least for small T .
This gives rise, in the estimates below, to a variance term depending on x; it so
happens that this terms decreases like 1/T 2 with time.

THEOREM 3 (Variance of empirical means, 2). Assume that there exists a Lip-
schitz function S with ‖S‖Lip ≤ C such that

σ(x)2

nxκ
≤ S(x), x ∈ X .

Then the variance of the empirical mean is bounded as follows:

Varx π̂(f ) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖f ‖2
Lip

κT

(
EπS + C

κT
E(x)

)
, if T0 = 0,

‖f ‖2
Lip

κT

((
1 + 1

κT

)
EπS + 2C(1 − κ)T0

κT
E(x)

)
,

otherwise.

(7)

In particular, the upper bound behaves asymptotically like ‖f ‖2
LipEπS/(κT ),

with a correction of order 1/(κT )2 depending on the initial point x.
Note that in some situations, EπS is known in advance from theoretical reasons.

In general, it is always possible to chose any origin x0 ∈ X (which may or may not
be the initial point x) and apply the estimate EπS ≤ S(x0) + CE(x0).

Concentration results. To get good confidence intervals for π̂(f ), it is neces-
sary to investigate deviations, that is, the behavior of the probabilities

Px

(|π̂(f ) − π(f )| > r
)
,

which reduce to deviations of the centered empirical mean

Px

(|π̂(f ) − Exπ̂(f )| > r
)
,

if the bias is known. Of course, the Bienaymé–Chebyshev inequality states that
Px(|π̂(f ) − Exπ̂(f )| > r) ≤ Varx π̂(f )

r2 , but this does not decrease very fast with r ,
and Gaussian-type deviation estimates are often necessary to get good confi-
dence intervals. Our next results show that the probability of a deviation of size
r is bounded by an explicit Gaussian or exponential term. (The same Gaussian-
exponential transition also appears in [16] and other works.)

Of course, deviations for the function 10f are 10 times bigger than deviations
for f , so we will use the rescaled deviation π̂(f )−Ex π̂(f )

‖f ‖Lip
.

In the sequel, we assume that σ∞ < ∞. Once more the proofs of the following
results are established in Section 3.
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THEOREM 4 (Concentration of empirical means, 1). Denote by V 2 the quan-
tity

V 2 := 1

κT

(
1 + T0

T

)
sup
x∈X

σ(x)2

nxκ
.

Then empirical means satisfy the following concentration result:

Px

( |π̂(f ) − Exπ̂(f )|
‖f ‖Lip

≥ r

)
≤

{
2e−r2/(16V 2), if r ∈ (0, rmax),
2e−κT r/(12σ∞), if r ≥ rmax,

(8)

where the boundary of the Gaussian window is given by rmax := 4V 2κT /(3σ∞).

Note that rmax � 1/
√

T for large T , so that the Gaussian window gets better
and better when normalizing by the standard deviation. This is in accordance with
the central limit theorem for Markov chains [19].

As for the case of variance above, we also provide an estimate using the average
of σ(x)2/nx rather than its supremum.

THEOREM 5 (Concentration of empirical means, 2). Assume that there exists
a Lipschitz function S with ‖S‖Lip ≤ C such that

σ(x)2

nxκ
≤ S(x), x ∈ X .

Denote by V 2
x the following term depending on the initial condition x:

V 2
x := 1

κT

(
1 + T0

T

)
EπS + CE(x)

κ2T 2 .

Then the following concentration inequality holds:

Px

( |π̂(f ) − Exπ̂(f )|
‖f ‖Lip

≥ r

)
≤

{
2e−r2/(16V 2

x ), if r ∈ (0, rmax),
2e−κT r/(4 max{2C,3σ∞}), if r ≥ rmax,

(9)

where rmax := 4V 2
x κT /max{2C,3σ∞}.

The two quantities V 2 and V 2
x in these theorems are essentially similar to the

estimates of the empirical variance Varx π̂(f ) given in Theorems 2 and 3, so that
the same comments apply.

Randomizing the starting point. As can be seen from the above, we are mainly
concerned with Markov chains starting from a deterministic point. The random
case might be treated as follows. Assume that the starting point X0 of the chain
is taken at random according to some probability measure μ. Then an additional
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variance term appears in the variance/bias decomposition (3), namely

EX0∼μ[|π̂(f ) − π(f )|2] = |EX0∼μπ̂(f ) − π(f )|2 +
∫

X
Varx π̂(f )μ(dx)

+ Var[E(π̂(f )|X0)].
The new variance term depends on how “spread” the initial distribution μ is and
can be easily bounded. Indeed, we have

E
(
π̂ (f )|X0 = x

) = 1

T

T0+T∑
k=T0+1

P kf (x)

so that if f is, say, 1-Lipschitz,

Var[E(π̂(f )|X0)] = 1

2T 2

∫
X

∫
X

∣∣∣∣∣
T0+T∑

k=T0+1

(
P kf (x) − P kf (y)

)∣∣∣∣∣
2

μ(dx)μ(dy)

≤ (1 − κ)2(T0+1)

2κ2T 2

∫
X

∫
X

d(x, y)2μ(dx)μ(dy),

since P kf is (1 − κ)k-Lipschitz. This is fast-decreasing both in T0 and T .
Note also that the bias can be significantly reduced if μ is known, for some

reason, to be close to the invariant measure π . More precisely, the eccentricity
E(x) in the bias formula (4) above is replaced with the L1 transportation distance
W1(μ,π).

Comparison to spectral methods. Previous results on deviations of empirical
means often rely on spectral methods (e.g., [16, 25]). When the starting point
of the MCMC method is taken according to an initial distribution μ, a factor
Varπ(dμ/dπ) generally appears in the deviation estimates [12, 16], the same way
it does for convergence of P N to the invariant distribution [11]. In particular, when
the initial distribution μ is a Dirac measure (as may be the case for practical rea-
sons), these estimates can perform poorly since Varπ(dδx0/dπ) behaves like the
cardinality of X and is not even finite on continuous spaces X . (This was one of
the motivations for the introduction of logarithmic Sobolev inequalities on discrete
spaces, see [11].) This forces either to start with a distribution μ close enough to
π—but estimating π is often part of the problem; or to use a nonzero burn-in time
T0 so that the distribution at time T0 is close enough to π . But then T0 has to
be comparable to or larger than the mixing time of the chain, and since estima-
tions of the mixing time by spectral methods have exactly the same shortcomings,
another ingredient (e.g., logarithmic Sobolev inequalities) is needed to efficiently
bound T0. On the other hand, the approach used here performs well when starting
at a single point, even with small or vanishing burn-in time.

Convergence of π̂ to π . The fact that the empirical measure π̂ yields estimates
close to π when integrating Lipschitz functions does not mean that π̂ itself is close
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to π . To see this, consider the simple case when X is a set of N elements equipped
with any metric. Consider the trivial Markov chain on X which sends every point
x ∈ X to the uniform probability measure on X (so that κ = 1 and the MCMC
method reduces to the ordinary Monte Carlo method). Then it is clear that for any
function f , the bias vanishes and the empirical variance is

Varx π̂(f ) = 1

T
Varπ f,

which in particular does not depend directly on N and allows to estimate π(f )

with a sample size independent of N , as is well known to any statistician. But the
empirical measure π̂ is a sum of Dirac masses at T points, so that its Wasserstein
distance to the uniform measure cannot be small unless T is comparable to N .

This may seem to contradict the Kantorovich–Rubinstein duality theorem [26],
which states that

W1(π̂ , π) = sup
f 1-Lipschitz

π̂(f ) − π(f ).

Indeed, we know that for a function f fixed in advance, very probably π̂(f ) is
close to π(f ). But for every realization of the random measure π̂ there may be
a particular function f yielding a large error. What is true, is that the averaged
empirical measure Exπ̂ starting at x tends to π fast enough, namely

W1(Exπ̂, π) ≤ (1 − κ)T0+1

κT
E(x),

which is just a restatement of our bias estimate above (Proposition 1). But as we
have just seen, ExW1(π̂, π) is generally much larger.

2. Examples and applications. We now show how these results can be ap-
plied to various settings where the positive curvature assumption is satisfied, rang-
ing from discrete product spaces to waiting queues, diffusions on R

d or manifolds,
and spin systems. In several examples, our results improve on the literature.

2.1. A simple example: Discrete product spaces. Let us first consider a very
simple example. This is mainly illustrative, as in this case the invariant measure
π is very easy to simulate. Let X = {0,1}N be the space of N -bit sequences
equipped with the uniform probability measure. We shall use the Hamming dis-
tance on X , namely, the distance between two sequences of 0’s and 1’s is the num-
ber of positions at which they differ. The Markov chain we shall consider consists,
at each step, in choosing a position 1 ≤ i ≤ N at random, and replacing the ith
bit of the sequence with either a 0 or a 1 with probability 1/2. Namely, starting at
x = (x1, . . . , xN), we have Px(x) = 1/2 and Px(x1, . . . ,1 − xi, . . . , xN) = 1/2N .

A typical Lipschitz function for this example is the function f0 equal to the
proportion of “0” bits in the sequence, for which ‖f0‖Lip = 1/N .
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Then an elementary computation (Example 8 in [22]) shows that κ = 1/N , so
that our theorems apply. The various quantities of interest are estimated as σ∞ = 1,
σ(x)2 ≤ 2 and nx ≥ 1; using Remark 40 in [22] yields a slightly better estimate
σ(x)2

nx
≤ 1/2. Moreover, E(x) = N/2 for any x ∈ X .

Then our bias estimate (4) for a Lipschitz function f is

|Exπ̂(f ) − π(f )| ≤ N2

2T
(1 − 1/N)T0+1‖f ‖Lip ≤ N2

2T
e−T0/N‖f ‖Lip.

So taking T0 ≈ 2N logN is enough to ensure small bias. This estimate of the mix-
ing time is known to be the correct order of magnitude: indeed, if each bit has been
updated at least once (which occurs after a time ≈ N logN ) then the measure is
exactly the invariant measure and so, under this event, the bias exactly vanishes. In
contrast, the classical estimate using only the spectral gap yields only O(N2) for
the mixing time [11].

The variance estimate (6) reads

Var π̂(f ) ≤ N2

2T
(1 + N/T )‖f ‖2

Lip

so that, for example, for the function f0 above, taking T ≈ N will yield a variance
≈1/N , the same order of magnitude as the variance of f0 under the uniform mea-
sure. (With a little work, one can convince oneself that this order of magnitude is
correct for large T .)

The concentration result (8) reads, say with T0 = 0, and for the Gaussian part

Px

(|π̂(f ) − Exπ̂(f )| ≥ r
) ≤ 2e

−T r2/8N2‖f ‖2
Lip

so that, for example, for f0 we simply get get 2e−T r2/8. For comparison, start-
ing at a Dirac and without burn-in the spectral estimate from [16] behaves like
2N/2e−T r2/4 for small r , so that we roughly improve the estimate by a factor 2N/2

in the absence of burn-in, due to the fact that the density of the law of the start-
ing point (a Dirac mass) plays no role in our setting, as discussed above in the
comparison with spectral methods.

2.2. Heat bath for the Ising model. Let G be a finite graph. Consider the clas-
sical Ising model from statistical mechanics [18], namely the configuration space

X := {−1,1}G together with the energy function U(s) := −∑
x∼y∈G s(x)s(y) −

h
∑

x∈G s(x) for s ∈ X , where h ∈ R. For some β ≥ 0, equip X with the Gibbs
distribution π := e−βU/Z where as usual Z := ∑

s e−βU(s). The distance between
two states is defined as the number of vertices of G at which their values differ,
namely d(s, s′) := 1

2
∑

x∈G |s(x) − s′(x)|.
For s ∈ X and x ∈ G, denote by sx+ and sx− the states obtained from s by

setting sx+(x) = +1 and sx−(x) = −1, respectively. Consider the following ran-
dom walk on X , known as the heat bath or Glauber dynamics [18]: at each step,
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a vertex x ∈ G is chosen at random, and a new value for s(x) is picked according
to local equilibrium, that is, s(x) is set to 1 or −1 with probabilities proportional
to e−βU(sx+) and e−βU(sx−), respectively (note that only the neighbors of x influ-
ence the ratio of these probabilities). The Gibbs distribution π is invariant (and
reversible) for this Markov chain.

When β = 0, this Markov chain is identical to the Markov chain on {0,1}N
described above, with N = |G|. Therefore, it comes as no surprise that for β small
enough, curvature is positive. More precisely, one finds [22]

κ ≥ 1

|G|
(

1 − vmax
eβ − e−β

eβ + e−β

)
,

where vmax is the maximal valency of a vertex of G. In particular, if β <
1
2 ln(vmax+1

vmax−1) then κ is positive. This is not surprising, as the current research in-
terest in transportation distances can be traced back to [8] (where the name Vaser-
shtein distance is introduced), in which a criterion for convergence of spin sys-
tems is introduced. Dobrushin’s criterion was a contraction property of the Markov
chain in Wasserstein distance, and thus, in this context, precisely coincides with
our notion of κ > 0. (See also [23].)

Let us see how our theorems apply, for example, to the magnetization f0(s) :=
1

|G|
∑

x∈G s(x). With the metric we use, we have ‖f0‖Lip = 2
|G| .

Let γ := 1 − vmax
eβ−e−β

eβ+e−β , so that κ = γ
|G| , and assume that γ > 0. Using the

gross inequalities σ∞ = 1, σ(s)2 ≤ 2 and ns ≥ 1, the variance estimate of Theo-
rem 2 reads, with T0 = 0,

Vars π̂(f0) ≤ 8

γ 2T
,

where s is any initial configuration. For example, taking T ≈ |G| (i.e., each site of
G is updated a few times by the heat bath) ensures that Vars π̂(f0) is of the same
order of magnitude as the variance of f0 under the invariant measure.

Theorem 4 provides a Gaussian estimate for deviations, with similar variance
up to numerical constants. The transition for Gaussian to non-Gaussian regime
becomes very relevant when the external magnetic field h is large, because then
the number of spins opposing the magnetic field has a Poisson-like rather than
Gaussian-like behavior (compare Section 3.3.3 in [22]).

The bias is controlled as follows: using E(s) ≤ diam X = |G| in Proposi-
tion 1 one finds |Es π̂(f0) − π(f0)| ≤ 2|G|(1 − γ /|G|)T0/γ T so that taking
T0 ≈ |G| log|G| is a good choice.

These results are not easily compared with the literature, which often focusses
on getting nonexplicit constants for systems of infinite size [18]. However, we have
seen that even in the case β = 0 our estimates improve on the spectral estimate,
and our results provide very explicit bounds on the time necessary to run a heat
bath simulation, at least for β not too large.
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2.3. The M/M/∞ queueing process. We now focus on a continuous-time ex-
ample, namely the M/M/∞ queueing process. This is a continuous-time Markov
chain (Xt)t≥0 on N with transition kernel given for small t by

Pt(x, y) =
⎧⎨
⎩

λt + o(t), if y = x + 1,
xt + o(t), if y = x − 1,
1 − (λ + x)t + o(t), if y = x,

where λ is a positive parameter. The (reversible) invariant measure is the Pois-
son distribution π on N with parameter λ. Although this process is very simple in
appearance, the unboundedness of the associated transition rates makes the deter-
mination of concentration inequalities technically challenging. Here, we will get a
convenient concentration inequality for Lipschitz functions f with respect to the
classical metric on N, in contrast with the situation of [15] where Poisson-like con-
centration estimates are provided for Lipschitz functions with respect to an ad hoc
metric. The techniques used here allow us to overcome this difficulty.

First, let us consider, given d ∈ N
�, d > λ, the so-called binomial Markov chain

(X
(d)
N )N∈N on {0,1, . . . , d}, with transition probabilities given by

P (d)
x (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ

d

(
1 − x

d

)
, if y = x + 1;(

1 − λ

d

)
x

d
, if y = x − 1;

λx

d2 +
(

1 − λ

d

)(
1 − x

d

)
, if y = x.

The invariant measure is the binomial distribution π(d) on {0,1, . . . , d} with para-
meters d and λ/d . It is not difficult to show that the Ricci curvature is κ = 1/d and
that σ(x)2 ≤ (λ + x)/d for x ∈ {0,1, . . . , d}.

But now, take instead the continuous-time version of the above, namely the
Markov process (X

(d)
t )t≥0 whose transition kernel is defined for any t ≥ 0 as

P
(d)
t (x, y) = e−t

+∞∑
k=0

tk

k!
(
P (d)

x

)k
(y), x, y ∈ {0,1, . . . , d}.

As d → ∞, the invariant measure π(d) converges weakly to the Poisson mea-
sure π , which is nothing but the invariant measure of the M/M/∞ queue-
ing process. One can check (using, e.g., Theorem 4.8 in [13]) that the process
(X

(d)
t )t≥0 sped up by a factor d converges to the M/M/∞ queueing process

(Xt)t≥0 in a suitable sense (in the Skorokhod space of càdlàg functions equipped
with the Skorokhod topology).

To derive a concentration inequality for the empirical mean π̂ (f ) := t−1 ×∫ t
0 f (Xs) ds, where f is 1-Lipschitz on N and time t is fixed, we proceed as fol-

lows. First, we will obtain a concentration estimate for the continuous-time bino-
mial Markov chain (X

(d)
t )t≥0 by using Theorem 5 for the chain (X

(d)
εN )N∈N with
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ε → 0, and then we will approximate the M/M/∞ queueing process (Xt)t≥0 by
the sped-up process (X

(d)
td )t≥0 with d → ∞.

For small ε, the Markov chain (X
(d)
εN )N∈N has Ricci curvature bounded below

by ε/d , eccentricity E(x) ≤ x +E(0) = x + λ, square diffusion constant σ(x)2 of
order ε(λ + x)/d , and nx ≥ 1, so that we may take S(x) := λ + x in Theorems 3
and 5 above (with T0 = 0 for simplicity). Let f be a 1-Lipschitz function. For a
given t > 0, we have Px-almost surely the Riemann approximation

π̂ (d)(f ) := 1

t

∫ t

0
f

(
X(d)

s

)
ds = lim

T →+∞ π̂ (d),T (f ),

where π̂ (d),T (f ) := 1
T

∑T
k=1 f (X

(d)
kt/T ). So applying Theorem 5 to the Markov

chain (X
(d)
εN )N∈N with ε = t/T , we get by Fatou’s lemma

Px

(∣∣π̂ (d)(f ) − Exπ̂
(d)(f )

∣∣ > r
)

≤ lim inf
T →+∞Px

(∣∣π̂ (d),T (f ) − Exπ̂
(d),T (f )

∣∣ > r
)

≤
{

2e−t2r2/(16d(2λt+(λ+x)d)), if r ∈ (
0, r

(d)
max

)
,

2e−tr/(12d), if r ≥ r
(d)
max,

where r
(d)
max := (8λt +4(λ+x)d)/3t . Finally, we approximate (Xt)t≥0 by the sped-

up process (X
(d)
td )t≥0 with d → ∞ and apply Fatou’s lemma again to obtain the

following.

COROLLARY 6. Let (Xs)s≥0 be the M/M/∞ queueing process with parame-
ter λ. Let f : N → R be a 1-Lipschitz function. Then for any t > 0, the empirical
mean π̂ (f ) := t−1 ∫ t

s=0 f (Xs) ds under the process starting at x ∈ N satisfies the
concentration inequality

Px

(|π̂(f ) − Exπ̂(f )| > r
) ≤

{
2e−tr2/(16(2λ+(λ+x)/t)), if r ∈ (0, rmax),
2e−tr/12, if r ≥ rmax,

where rmax := (8λt + 4(λ + x))/3t .

Let us mention that a somewhat similar, albeit much less explicit, concentration
inequality has been derived in [12] via transportation-information inequalities and
a drift condition of Lyapunov-type.

Our results generalize to other kinds of waiting queues, such as queues with a
finite number of servers and positive abandon rate.

2.4. Euler scheme for diffusions. Let (Xt)t≥0 be the solution of the following
stochastic differential equation on the Euclidean space R

d :

dXt = b(Xt) dt + √
2ρ(Xt) dWt,
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where (Wt)t≥0 is a standard Brownian motion in R
d , the function b : Rd → R

d

is measurable, as is the d × d matrix-valued function ρ. For a given matrix A,
we define the Hilbert–Schmidt norm ‖A‖HS := √

trAA∗ and the operator norm
‖A‖Rd := supv �=0

‖Av‖
‖v‖ .

We assume that the following stability condition [4, 7] is satisfied:

(C) the functions b and ρ are Lipschitz, and there exists α > 0 such that

‖ρ(x) − ρ(y)‖2
HS + 〈x − y, b(x) − b(y)〉 ≤ −α‖x − y‖2, x, y ∈ R

d .

A typical example is the Ornstein–Uhlenbeck process, defined by ρ = Id and
b(x) = −x. As we will see, this assumption implies that κ > 0.

The application of Theorems 3, 4 and 5 on this example requires careful ap-
proximation arguments (see below). The result is the following.

COROLLARY 7. Let π̂(f ) := t−1 ∫ t
s=0 f (Xs) ds be the empirical mean of the

1-Lipschitz function f : Rd → R under the diffusion process (Xt)t≥0 above, start-
ing at point x. Let S : X → R be a C-Lipschitz function with S(x) ≥ 2

α
‖ρ(x)‖2

Rd .
Set

V 2
x := 1

αt
EπS + CE(x)

α2t2 .

Then one has Varx π̂(f ) ≤ V 2
x and

Px

(|π̂ (f ) − Exπ̂(f )| > r
) ≤

{
2e−r2/(16V 2

x ), if r ∈ (0, rmax),
2e−αtr/(8C), if r ≥ rmax,

where rmax := 2V 2
x αt/C.

An interesting case is when ρ is constant or bounded, in which case one can

take S(x) := supx

2‖ρ(x)‖2
Rd

α
so that C = 0. Then rmax = ∞ and the exponential

regime disappears. For this particular case, our result is comparable to [12], but
note, however, that their result requires some regularity on the distribution of the
starting point of the process, in contrast with ours.

Note that the final result features the average of S under the invariant distribu-
tion. Sometimes this value is known from theoretical reasons, but in any case the
assumption (C) implies very explicit bounds on the expectation of d(x0, x)2 under
the invariant measure π [4], which can be used to bound EπS knowing S(x0), as
well as to bound E(x).

The Lipschitz growth of ‖ρ‖2
Rd allows to treat stochastic differential equations

where the diffusion constant ρ grows like
√

x, such as naturally appear in popula-
tion dynamics or superprocesses.
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PROOF OF COROLLARY 7. Consider the underlying Euler scheme with
(small) constant step δt for the stochastic differential equation above, that is, the
Markov chain (X

(δt)
N )N∈N defined by

X
(δt)
N+1 = X

(δt)
N + b

(
X

(δt)
N

)
δt + √

2δtρ
(
X

(δt)
N

)
YN,

where (YN) is any sequence of i.i.d. standard Gaussian random vectors. When
δt → 0, this process tends to a weak solution of the stochastic differential equa-
tion [4].

Let us see how Theorems 3, 4 and 5 may be applied. The measure Px is
a Gaussian with expectation x + b(x)δt and covariance matrix 2δtρρ∗(x). Let
(X

(δt)
N (x))N∈N be the chain starting at x. Under (C), we have

E
[∥∥X(δt)

1 (x) − X
(δt)
1 (y)

∥∥2] = ‖x − y‖2 + 2δt〈x − y, b(x) − b(y)〉
+ 2δt‖ρ(x) − ρ(y)‖2

HS + δt2‖b(x) − b(y)‖2

≤ ‖x − y‖2(
1 − αδt + O(δt2)

)2
,

so that we obtain κ ≥ αδt +O(δt2). Moreover, the diffusion constant σ(x) is given
by

σ(x)2 = 1

2

∫
Rd

∫
Rd

‖y − z‖2Px(dy)Px(dz)

= 2δt‖ρ(x)‖2
HS

by a direct computation.
Next, using the Poincaré inequality for Gaussian measures in R

d , with a little
work one gets that the local dimension is

nx = ‖ρ(x)‖2
HS

‖ρ(x)‖2
Rd

.

For example, if ρ is the d × d identity matrix we have nx = d , whereas nx = 1 if
ρ is of rank 1.

So, we get that σ(x)2

κnx
is bounded by the function

S(x) := 2

α
‖ρ(x)‖2

Rd + O(δt).

However, here we have σ∞ = ∞. This can be circumvented either by directly
plugging into Lemma 10 the well-known Laplace transform estimate for Lipschitz
functions of Gaussian variables, or slightly changing the approximation scheme
as follows. Let us assume that supx ‖ρ(x)‖Rd < ∞. Now, replace the Gaussian
random vectors YN with random vectors whose law is supported in a large ball of
radius R and approximates a Gaussian (the convergence theorems of [4] cover this
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situation as well). Then we have σ∞ = R
√

2δt supx ‖ρ(x)‖Rd . This modifies the
quantities σ(x)2 and ρ(x) by a factor at most 1 + o(1) as R → ∞.

Therefore, provided S is Lipschitz, we can apply Theorem 5 to the empirical
mean π̂ (f ) := t−1 ∫ t

s=0 f (Xs) ds by using the Euler scheme at time T = t/δt with
δt → 0, and using Fatou’s lemma as we did above for the case of the M/M/∞
process. Note in particular that σ∞ → 0 as δt → 0, so that σ∞ will disappear from
rmax in the final result.

Finally, the constraint supx ‖ρ(x)‖Rd < ∞ can be lifted by considering that,
under our Lipschitz growth assumptions on b and ‖ρ(x)‖2

Rd , with arbitrary high
probability the process does not leave a compact set and so, up to an arbitrarily
small error, the deviation probabilities considered depend only on the behavior of
ρ and b in a compact set. �

2.5. Diffusions on positively curved manifolds. Consider a diffusion process
(Xt)t≥0 on a smooth, compact N -dimensional Riemannian manifold M , given by
the stochastic differential equation

dXt = b dt + √
2dBt

with infinitesimal generator

L := � + b · ∇,

where b is a vector field on M , � is the Laplace–Beltrami operator and Bt is the
standard Brownian motion in the Riemannian manifold M . The Ricci curvature
of this operator in the Bakry–Émery sense [2], applied to a tangent vector v, is
Ric(v, v) − v · ∇vb where Ric is the usual Ricci tensor. Assume that this quantity
is at least K for any unit tangent vector v.

Consider as above the Euler approximation scheme at time δt for this stochastic
differential equation: starting at a point x, follow the flow of b for a time δt , to
obtain a point x′; now take a random tangent vector w at x′ whose law is a Gaussian
in the tangent plane at x′ with covariance matrix equal to the metric, and follow
the geodesic generated by w for a time

√
2δt . Define Px to be the law of the point

so obtained. When δt → 0, this Markov chain approximates the process (Xt)t≥0
(see, e.g., Section I.4 in [3]). Just as above, actually the Gaussian law has to be
truncated to a large ball so that σ∞ < ∞.

For this Euler approximation, we have κ ≥ Kδt + O(δt3/2) where K is a lower
bound for Ricci–Bakry–Émery curvature [22]. We have σ(x)2 = 2Nδt +O(δt3/2)

and nx = N +O(
√

δt). The details are omitted, as they are very similar to the case
of R

d above, except that in a neighborhood of size
√

δt of a given point, distances
are distorted by a factor 1 ± O(

√
δt) w.r.t. the Euclidean case. We restrict the

statement to compact manifolds so that the constants hidden in the O(·) notation
are uniform in x.

So applying Theorem 4 to the Euler scheme at time T = t/δt we get the follow-
ing corollary.
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COROLLARY 8. Let (Xt)t≥0 be a process as above on a smooth, compact N -
dimensional Riemannian manifold X , with Bakry–Émery curvature at least K > 0.
Let π̂(f ) := t−1 ∫ t

s=0 f (Xs) ds be the empirical mean of the 1-Lipschitz function
f : X → R under the diffusion process (Xt) starting at some point x ∈ X . Then

Px

(|π̂ (f ) − Exπ̂(f )| > r
) ≤ 2e−K2tr2/32.

Once more, a related estimate appears in [12], except that their result features an
additional factor ‖dβ/dπ‖2 where β is the law of the initial point of the Markov
chain and π is the invariant distribution, thus preventing it from being applied with
β a Dirac measure at x.

2.6. Nonlinear state space models. Given a Polish state space (X , d), we con-
sider the Markov chain (XN)N∈N solution of the following equation:

XN+1 = F(XN,WN+1), X0 ∈ X ,

which models a noisy dynamical system. Here, (WN)N∈N is a sequence of i.i.d.
random variables with values in some parameter space, with common distribu-
tion μ. We assume that there exists some r < 1 such that

Ed(F (x,W1),F (y,W1)) ≤ rd(x, y), x, y ∈ X ,(10)

and that moreover the following function is L2-Lipschitz on X :

x �→ E[d(F (x,W1),F (x,W2))
2].

Note that the assumption (10) already appears in [7] [condition (3.3)] to study the
propagation of Gaussian concentration to path-dependent functionals of (XN)N∈N.

Since the transition probability Px is the image measure of μ by the function
F(x, ·), it is straightforward that the Ricci curvature κ is at least 1 − r , which
is positive. Hence, we may apply Theorem 3 with the L2/(2(1 − r))-Lipschitz
function

S(x) := 1

2(1 − r)
E[d(F (x,W1),F (x,W2))

2],
to obtain the variance inequality

sup
‖f ‖Lip≤1

Varx π̂(f ) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(1 − r)T

{
L2

2(1 − r)2T
E(x) + EπS

}
, if T0 = 0,

1

κT

{(
1 + 1

(1 − r)T

)
EπS

+ L2rT0

(1 − r)2T
E(x)

}
, otherwise.

Note that to obtain a qualitative concentration estimate via Theorem 5, we need
the additional assumption σ∞ < ∞, which depends on the properties of μ and of
the function F(x, ·) and states that at each step the noise has a bounded influence.
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3. Proofs.

3.1. Proof of Proposition 1. Let f be a 1-Lipschitz function. Let us recall
from [22] that for k ∈ N, the function P kf is (1 − κ)k-Lipschitz. Then we have by
the invariance of π

|Exπ̂(f ) − π(f )| = 1

T

∣∣∣∣∣
T0+T∑

k=T0+1

∫
X

(
P kf (x) − P kf (y)

)
π(dy)

∣∣∣∣∣
≤ 1

T

T0+T∑
k=T0+1

(1 − κ)k
∫

X
d(x, y)π(dy)

≤ (1 − κ)T0+1

κT

∫
X

d(x, y)π(dy),

so that we obtain the result.

3.2. Proof of Theorems 2 and 3. Let us start with a variance-type result under
the measure after N steps. The proof relies on a simple induction argument and is
left to the reader.

LEMMA 9. For any N ∈ N
� and any Lipschitz function f on X , we have

P N(f 2) − (P Nf )2 ≤ ‖f ‖2
Lip

N−1∑
k=0

(1 − κ)2(N−1−k)P k

(
σ 2

n

)
.(11)

In particular, if the rate x �→ σ(x)2/nx is bounded, then letting N tend to infinity
above entails a variance estimate under the invariant measure π :

Varπ f ≤ ‖f ‖2
Lip sup

x∈X

σ(x)2

nxκ
.(12)

Now, we are able to prove the variance bounds of Theorems 2 and 3. Given a
1-Lipschitz function f , consider the functional

fx1,...,xT −1(xT ) := 1

T

T∑
k=1

f (xk),

the others coordinates x1, . . . , xT −1 being fixed. The function fx1,...,xT −1 is 1/T -
Lipschitz, hence 1/(κT )-Lipschitz since κ ≤ 1. Moreover, for each k ∈ {T −
1, T − 2, . . . ,2}, the conditional expectation of π̂ (f ) knowing X1 = x1, . . . ,Xk =
xk can be written in terms of a downward induction

fx1,...,xk−1(xk) :=
∫

X
fx1,...,xk

(xk+1)Pxk
(dxk+1)



2438 A. JOULIN AND Y. OLLIVIER

and

f∅(x1) :=
∫

X
fx1(x2)Px1(dx2).

By Lemma 3.2 (step 1) in [15], we know that fx1,...,xk−1 is Lipschitz with con-
stant sk , where

sk := 1

T

T −k∑
j=0

(1 − κ)j ≤ 1

κT
.

Hence, we can use the variance bound (11) with N = 1 for the function fx1,...,xk−1 ,
successively for k = T ,T − 1, . . . ,2, to obtain

Ex[π̂(f )2] =
∫

X T
fx1,...,xT −1(xT )2PxT −1(dxT ) · · ·Px1(dx2)P

T0+1
x (dx1)

≤
∫

X T −1
fx1,...,xT −2(xT −1)

2PxT −2(dxT −1) · · ·Px1(dx2)P
T0+1
x (dx1)

+ 1

κ2T 2 P T0+T −1
(

σ 2

n

)
(x)

≤
∫

X T −2
fx1,...,xT −3(xT −2)

2PxT −3(dxT −2) · · ·Px1(dx2)P
T0+1
x (dx1)

+ 1

κ2T 2

(
P T0+T −2

(
σ 2

n

)
(x) + P T0+T −1

(
σ 2

n

)
(x)

)
≤ · · ·

≤
∫

X
f∅(x1)

2P T0+1
x (dx1) + 1

κ2T 2

T0+T −1∑
k=T0+1

P k

(
σ 2

n

)
(x)

≤ (Exπ̂(f ))2 + 1

κ2T 2

T0∑
k=0

(1 − κ)2(T0−k)P k

(
σ 2

n

)
(x)

+ 1

κ2T 2

T0+T −1∑
k=T0+1

P k

(
σ 2

n

)
(x),

where in the last step we applied the variance inequality (11) to the Lipschitz
function f∅, with N = T0 + 1. Therefore, we get

Varx π̂(f ) ≤ 1

κ2T 2

(
T0∑

k=0

(1 − κ)2(T0−k)P k

(
σ 2

n

)
(x)

+
T0+T −1∑
k=T0+1

P k

(
σ 2

n

)
(x)

)
.
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Theorem 2 is a straightforward consequence of the latter inequality. To establish
Theorem 3, for instance, (7) in the case T0 �= 0, we rewrite the above as

Varx π̂(f ) ≤ 1

κT 2

{
T0∑

k=0

(1 − κ)2(T0−k)P kS(x) +
T0+T −1∑
k=T0+1

P kS(x)

}

≤ 1

κT 2

{
T0∑

k=0

(1 − κ)2(T0−k)(CW1(P
k
x ,π) + EπS

)

+
T0+T −1∑
k=T0+1

(
CW1(P

k
x ,π) + EπS

)}

≤ 1

κT 2

{(
1 + 1

κT

)
T EπS +

T0∑
k=0

C(1 − κ)2T0−kE(x)

+
T0+T −1∑
k=T0+1

C(1 − κ)kE(x)

}

≤ 1

κT 2

{(
1 + 1

κT

)
T EπS + 2C(1 − κ)T0

κ
E(x)

}
.

Finally, the proof in the case T0 = 0 is very similar and is omitted.

3.3. Proofs of Theorems 4 and 5. The proofs of the concentration Theorems 4
and 5 follows the same lines as that for variance above, except that Laplace trans-
form estimates Eeλf −λEf now play the role of the variance E[f 2] − (Ef )2.

Assume that there exists a Lipschitz function S : X → R with ‖S‖Lip ≤ C such
that

σ(x)2

nxκ
≤ S(x), x ∈ X .

Let us give first a result on the Laplace transform of Lipschitz funtions under
the measure at time N .

LEMMA 10. Let λ ∈ (0, κT
max{4C,6σ∞}). Then for any N ∈ N

� and any 2
κT

-
Lipschitz function f on X , we have

P N(eλf ) ≤ exp

{
λP Nf + 4λ2

κT 2

N−1∑
k=0

P kS

}
.(13)

In the case C = 0, the same formula holds for any λ ∈ (0, κT
6σ∞ ).



2440 A. JOULIN AND Y. OLLIVIER

PROOF. Let f be 2
κT

-Lipschitz. By Lemma 38 in [22], we know that if g is an
α-Lipschitz function with α ≤ 1 and if λ ∈ (0, 1

3σ∞ ) then we have the estimate

P(eλg) ≤ exp{λPg + κλ2α2S},
and by rescaling, the same holds for the function f with α = 2

κT
whenever λ ∈

(0, κT
6σ∞ ). Moreover, the function P Nf + 4λ

κT 2

∑N−1
k=0 P kS is also 2

κT
-Lipschitz for

any N ∈ N
�, since λ ∈ (0, κT

4C
). Hence, the result follows by a simple induction

argument. �

Now let us prove Theorem 5, using again the notation of Section 3.2 above.

Theorem 4 easily follows from Theorem 5 by taking S := supx∈X
σ(x)2

nxκ
and letting

C → 0 in the formula (9).
Let f be a 1-Lipschitz function on X and let λ ∈ (0, κT

max{4C,6σ∞}). Using the

Laplace transform estimate (13) with N = 1 for the 2
κT

-Lipschitz functions

xk �→ fx1,...,xk−1(xk) + 4λ

κT 2

T −k−1∑
l=0

P lS(xk),

successively for k = T − 1, T − 2, . . . ,2, we have

Exe
λπ̂(f )

=
∫

X T
e
λfx1,...,xT −1 (xT )

PxT −1(dxT ) · · ·Px1(dx2)P
T0+1
x (dx1)

≤
∫

X T −1
e
λfx1,...,xT −2 (xT −1)+4λ2/(κT 2)S(xT −1)

× PxT −2(dxT −1) · · ·Px1(dx2)P
T0+1
x (dx1)

≤
∫

X T −2
e
λfx1,...,xT −3 (xT −2)+4λ2/(κT 2)

∑1
l=0 P lS(xT −2)

× PxT −3(dxT −2) · · ·Px1(dx2)P
T0+1
x (dx1)

≤ · · ·
≤

∫
X

eλf∅(x1)+4λ2/(κT 2)
∑T −2

l=0 P lS(x1)P T0+1
x (dx1)

≤ eλEx π̂(f )+4λ2/(κT 2)(
∑T −2

l=0 P T0+1+lS(x)+∑T0
l=0 P lS(x)),

where in the last line we applied the Laplace transform estimate (13) to the 2
κT

-
Lipschitz function

x1 �→ f∅(x1) + 4λ

κT 2

T −2∑
l=0

P lS(x1),
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with N = T0 + 1. Therefore, we get

Exe
λ(π̂(f )−Ex π̂(f )) ≤ e4λ2V 2

x .

Finally, using Markov’s inequality and optimizing in λ ∈ (0, κT
max{4C,6σ∞}) entails

the result. This ends the proof.
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